Tornheim type series and nonlinear Euler sums

نویسندگان
چکیده

منابع مشابه

The Evaluation of Tornheim Double Sums

We provide an explicit formula for the Tornheim double series in terms of integrals involving the Hurwitz zeta function. We also study the limit when the parameters of the Tornheim sum become natural numbers, and show that in that case it can be expressed in terms of definite integrals of triple products of Bernoulli polynomials and the Bernoulli function Ak(q) := kζ(1− k, q).

متن کامل

Euler and the Partial Sums of the Prime Harmonic Series

Abstract. In a 1737 paper, Euler gave the first proof that the sum of the reciprocals of the prime numbers diverges. That paper can be considered as the founding document of analytic number theory, and its key innovation — socalled Euler products — are now ubiquitous in the field. In this note, we probe Euler’s claim there that “the sum of the reciprocals of the prime numbers” is “as the logari...

متن کامل

On Mordell-tornheim Sums and Multiple Zeta Values

RÉSUMÉ. Nous prouvons que toute somme de Mordell-Tornheim avec des arguments entiers positifs peut s’écrire comme une combinaison linéaire rationnelle de valeurs prises par des fonctions multi-zêta ayant le même poids et la même profondeur. Selon un résultat de Tsumura, il s’ensuit que toute somme de Mordell-Tornheim ayant un poids et une profondeur de parité différente peut s’exprimer comme un...

متن کامل

Computation and theory of extended Mordell-Tornheim-Witten sums

We consider some fundamental generalized Mordell–Tornheim–Witten (MTW) zeta-function values along with their derivatives, and explore connections with multiplezeta values (MZVs). To achieve this, we make use of symbolic integration, high precision numerical integration, and some interesting combinatorics and special-function theory. Our original motivation was to represent unresolved constructs...

متن کامل

Computation and theory of Mordell-Tornheim-Witten sums II

In [7] the current authors, along with the late and much-missed Richard Crandall (1947– 2012), considered generalized Mordell–Tornheim–Witten (MTW) zeta-function values along with their derivatives, and explored connections with multiple-zeta values (MZVs). This entailed use of symbolic integration, high precision numerical integration, and some interesting combinatorics and special-function th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2017

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2016.10.002